3.533 \(\int \frac{\csc (e+f x)}{(d \csc (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=46 \[ \frac{2 E\left (\left .\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )\right |2\right )}{d f \sqrt{\sin (e+f x)} \sqrt{d \csc (e+f x)}} \]

[Out]

(2*EllipticE[(e - Pi/2 + f*x)/2, 2])/(d*f*Sqrt[d*Csc[e + f*x]]*Sqrt[Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.021443, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {16, 3771, 2639} \[ \frac{2 E\left (\left .\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )\right |2\right )}{d f \sqrt{\sin (e+f x)} \sqrt{d \csc (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]/(d*Csc[e + f*x])^(3/2),x]

[Out]

(2*EllipticE[(e - Pi/2 + f*x)/2, 2])/(d*f*Sqrt[d*Csc[e + f*x]]*Sqrt[Sin[e + f*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\csc (e+f x)}{(d \csc (e+f x))^{3/2}} \, dx &=\frac{\int \frac{1}{\sqrt{d \csc (e+f x)}} \, dx}{d}\\ &=\frac{\int \sqrt{\sin (e+f x)} \, dx}{d \sqrt{d \csc (e+f x)} \sqrt{\sin (e+f x)}}\\ &=\frac{2 E\left (\left .\frac{1}{2} \left (e-\frac{\pi }{2}+f x\right )\right |2\right )}{d f \sqrt{d \csc (e+f x)} \sqrt{\sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.0311639, size = 45, normalized size = 0.98 \[ -\frac{2 E\left (\left .\frac{1}{4} (-2 e-2 f x+\pi )\right |2\right )}{d f \sqrt{\sin (e+f x)} \sqrt{d \csc (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]/(d*Csc[e + f*x])^(3/2),x]

[Out]

(-2*EllipticE[(-2*e + Pi - 2*f*x)/4, 2])/(d*f*Sqrt[d*Csc[e + f*x]]*Sqrt[Sin[e + f*x]])

________________________________________________________________________________________

Maple [C]  time = 0.106, size = 533, normalized size = 11.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)/(d*csc(f*x+e))^(3/2),x)

[Out]

-1/f*2^(1/2)*(2*cos(f*x+e)*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2
)*(-(I*cos(f*x+e)-sin(f*x+e)-I)/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2),1/2
*2^(1/2))-cos(f*x+e)*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2)*(-(I
*cos(f*x+e)-sin(f*x+e)-I)/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2),1/2*2^(1/
2))+2*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-sin
(f*x+e)-I)/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2),1/2*2^(1/2))-(-I*(-1+cos
(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-sin(f*x+e)-I)/sin(f*
x+e))^(1/2)*EllipticF(((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2),1/2*2^(1/2))+2^(1/2)*cos(f*x+e)-2^(1/2))/
(d/sin(f*x+e))^(3/2)/sin(f*x+e)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc \left (f x + e\right )}{\left (d \csc \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(d*csc(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(csc(f*x + e)/(d*csc(f*x + e))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{d \csc \left (f x + e\right )}}{d^{2} \csc \left (f x + e\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(d*csc(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*csc(f*x + e))/(d^2*csc(f*x + e)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc{\left (e + f x \right )}}{\left (d \csc{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(d*csc(f*x+e))**(3/2),x)

[Out]

Integral(csc(e + f*x)/(d*csc(e + f*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc \left (f x + e\right )}{\left (d \csc \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(d*csc(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(csc(f*x + e)/(d*csc(f*x + e))^(3/2), x)